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Abstract. If a non-autonomous quantum system has an semisimple Lie algebraic structure and
its Hamiltonian can be treated as a linear function of the generators of a semisimple Lie group,
we show a method for finding a set of gauge transformations that transform the Hamiltonian to
a linear function of Cartan operators. The exact solutions of the equations of motion, as well
as a set of time-dependent invariant operators which commute with each other, are obtained by
the inverse gauge transformations. An SU(3) model serves as an illustration.

When considering the influence of the outside environment, the Hamiltonian of a quantum
system often assumes a time-dependent form. Many important non-autonomous quantum
systems are found to have algebraic structures and the Hamiltonian of the system can be
treated as a linear function of the generators of a Lie group. For instance, the quantum
motion of a particle in a Paul trap has an SU(1, 1) structure [1, 2], and the Hamiltonian
describing the controlling of the particle spin polarization in beam dynamics possesses
an SU(2) structure [3]. Recently, the two-level density-dependent multiphoton Jaynes–
Cummings models [4] has been shown to have an SU(2) structure [5]. Furthermore, some
nonlinear quantum systems can be transformed into a linear system. For instance, the
Hamiltonian describing an electron in a hydrogen atom can be transformed into a linear
function of the generators of a U(4) group [6, 7].

There are many methods for finding solutions of a linear quantum system [8–12].
The problem with all these methods is that the procedures are very complicated for
high-dimensional algebras. The purpose of this paper is to show an effective method
for obtaining exact solutions of non-autonomous quantum systems with semi-simple Lie
algebraic structure by means of the algebraic dynamics [1].

For some special cases, such as SU(2), SU(1, 1) and h(4) structures, the solutions have
already been worked out by the algebraic dynamics [1, 3]. The main procedure is to find a
gauge transformation that transforms the Hamiltonian to a linear function of Cartan operators
which commute with each other. In general, this method can be used for any linear systems.
However, for semi-simple Lie algebraic structure the solution can easily be obtained.

The Hamiltonian of a linear non-autononous quantum system can be written as

H(t) = p1(t)X1+ · · · + pN(t)XN (1)
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where thepi(t), i = 1, . . . , N , are functions of timet and{X1, . . . , XN } form a basis of a
Lie algebra G of dimensionN . If G is semisimple, we can find a basis in Cartan standard
form [13]:

{Hi,Eα,E−α|i = 1, . . . , l;α = 1, . . . ,M} (2)

[Hi,Hj ] = 0

[Hi,Eα] = αiEα

[Eα,E−α] =
l∑
i=1

αiHi

[Eα,Eβ ] = Nα,βEα+β.

(3)

Here l is the rank of the semisimple Lie algebra G, andM = (N − l)/2 is the number of
raising (or lowering) operators. The root of the raising operatorEα is positive, and the root
of the lowering operatorE−α is negative. In this basis the Hamiltonian has the form

H =
l∑
i=1

ai(t)Hi +
M∑
α=1

(bi(t)Eα + ci(t)E−α). (4)

To obtain solutions of the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (5)

we make a gauge transformation

H(t)→ H ′(t) = UgHU−1
g + i

∂Ug

∂t
U−1
g (6)

|ψ(t)〉 → |ψ ′(t)〉 = Ug|ψ(t)〉 (7)

whereUg(t) is an time-dependent operator with inverseU−1
g (t). It is easy to see that|ψ ′(t)〉

satisfies the equation

i
∂

∂t
|ψ ′(t)〉 = H ′|ψ ′(t)〉. (8)

Our aim is to choose a gauge transformation that transformsH into a linear combination
of the Cartan operators

H ′(t) = d1(t)H1+ · · · + dl(t)Hl. (9)

To this end, we find thatUg(t) can be chosen as 2M consecutive gauge transformations in
the form

Ug(t) = U2(t)U1(t) (10)

whereU1 andU2 areM successive gauge transformations,

U1(t) = exp(ifM(t)EM) · · ·exp(if1(t)E1) (11)

U2(t) = exp(igM(t)E−M) · · ·exp(ig1(t)E−1). (12)

The time-dependent parametersfi(t) andgi(t) are determined by equations (21) and (24)
with the initial condition that at timet = 0 fi(t) andgi(t) satisfy

fi(0) = gi(0) = 0 i = 1, 2, . . . ,M. (13)
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The sequence ofE1, E2, . . . , EM is arranged in increasing order of their corresponding
roots.

The fi , (i = 1, . . . ,M), are obtained by the requirement that after the gauge
transformationU1, the coefficients ofE1, . . . , EM vanish. From this requirement, we get a
set of differential equations by substitutingU1(t) of (11) in (6):

ḟi = Fi
(
a1, . . . , al, b1, . . . , bM, c1, . . . , cM, f1, . . . , fM, ḟ1, . . . , ḟi−1

)
(14)

wherei = 1, . . . ,M, and the right-hand side of the above equation is a polynomial of its
variables. These equations can easily be obtained once we note the facts

efHiEαe
−fHi = efαiEα (15)

efEαHie
−fEα = Hi − f αiEα (16)

efEαE−αe−fEα = E−α + f
l∑
i=1

αiHi − f
2

2

(
l∑
i=1

αiαi

)
Eα (17)

efEαEβe
−fEα =

K∑
k=0

1

k!
Nα,βNα,α+β · · ·Nα,(k−1)α+βEkα+β. (18)

Here β 6= α, K 6 3 andK is determined by the condition thatkα + β is a root, but
(K + 1)α + β is not. If the roots ofEα and Eβ are both positive, then the root of
Ekα+β , which is also positive, is larger than that ofEα. Thus ḟi+1, ḟi+2, . . . do not appear
in the coefficient ofEi . That is why the right-hand side of equation (14) only contains
ḟ1, ḟ2, . . . , ḟi−1. After gauge transformationU1(t), the Hamiltonian becomes

H(1)(t) =
l∑
i=1

a′i (t)Hi +
M∑
α=1

[
b′α(t)Eα + c′α(t)E−α

]
(19)

whereb′α(t) reads

b′α(t) = −ḟi + Fi(a1, . . . , al, b1, . . . , bM, c1, . . . , cM, f1, . . . , fM, ḟ1, . . . , ḟi−1). (20)

If we let b′α(t) = 0, we obtain equations (14).
By inserting the right-hand side oḟf1, ḟ2, . . . , ḟi−1, of equations (14) in the right-hand

side of ḟi , the above set of differential equations can be transformed into standard form:

ḟi(t) = Fi(a1, . . . , al, b1, . . . , bM, c1, . . . , cM, f1, . . . , fM). (21)

HereFi is still a polynomial; thus for the initial condition (13), the above equations have a
unique set of solutionsf1(t), f2(t), . . . , fM(t).

Now, the Hamiltonian becomes

H(1)(t) =
l∑
i=1

a′i (t)Hi +
M∑
α=1

c′α(t)E−α. (22)

The gauge transformationU2(t) transformsH(1)(t) into

H(2)(t) =
l∑
i=1

a′′i (t)Hi +
M∑
α=1

c′′α(t)E−α. (23)

Note that theEα, (α = 1, . . . ,M), do not appear in the above equations. Similarly, we
obtain thegi(t), (i = 1, . . . ,M), by the requirement that the gauge transformationU2(t)
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transformsH(1)(t) into the form (9). By means of a similar argument, we find that thegi(t)

satisfy the differential equations

ġi = Gi(a
′
1, . . . , a

′
l , c
′
1, . . . , c

′
M, g1, . . . , gM). (24)

HereGi , (i = 1, . . . ,M) is a polynomial of its variables. There exist a unique set of
solutions that satisfy the initial condition (13). Note that the coefficient ofHi remainsa′i (t)
after the gauge transformationU2:

di(t) = a′i (t) = a′′(t). (25)

After gauge transformation, the Schrödinger equation becomes

i
∂

∂t
|ψ ′(t)〉 = (d1(t)H1+ · · · + dl(t)Hl) |ψ ′(t)〉. (26)

Thus the complete set of solutions for|ψ ′(t)〉 are{|ψ ′n(t)〉}
|ψ ′n(t)〉 = e−i2n(t)|φn〉 (27)

where

2n(t) =
∑
i

ni

∫ t

0
dt di(t) (28)

and|φn〉 is the common eigenstate of{Hi} corresponding to the eigenvaluen = (n1, . . . , nl)

which can be obtained from Lie algebraic theory:

Hi |φn〉 = ni |φn〉. (29)

From equation (7), we obtain the complete set of solutions of the wavefunction|ψ(t)〉
|ψn(t)〉 = e−i2n(t)U−1

g (t)|φn〉

=
∑
m

e−i2n(t)Dmn(t)|φm〉 (30)

whereDmn(t) is the matrix element ofU−1
g (t):

Dmn(t) = 〈φm|U−1
1 (t)U−1

2 (t)|φn〉. (31)

In our specified form ofUg(t), the matrix elementDmn(t) can be worked out
algebraically. Letting|0〉 be the lowest-weight state of an irreducible representation of
the Lie algebra

E−α|0〉 = 0 (α = 1, . . . ,M) (32)

then|φn〉 can be written as a product of raising operators acting on the lowest-weight state.
For simplicity, let us assume

|φn〉 = cnEn1
1 E

n2
2 · · ·EnMM |0〉 (33)

wherecn is a normalization coefficient. Without loss of generality, we assumeE−α = E†α,
so that

〈0|Eα = 0. (34)

Thus equation (31) can be written as

Dmn(t) = c∗mcn〈0|EmM−M(t) · · ·Em2
−2(t)E

m1
−1(t)E

n1
1 (t)E

n2
2 (t) · · ·EnMM (t)|0〉 (35)

where

Eα(t) = U−1
2 (t)EαU2(t) (36)

E−α(t) = U1(t)E−αU−1
1 (t). (37)
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E±α(t) can be calculated according to equations (15)–(18), and both are linear functions of
{Hi,E±α}. Similarly to the Wick theorem, we can rearrange the order of theHi,E±α in such
a way that theEα (α = 1, . . . ,M) appear on the left of theHi , and theE−α (α = 1, . . . ,M)
appear on the right of theHi . Using equations (32) and (34), we obtainDmn(t). In the
specified system, the above procedure for calculatingDmn(t) can be simplified.

Another immediate result from the above discussion is a set of time-dependent invariant
observables which commute with each other [1]:

Ii(t) = U−1
g (t)HiUg(t). (38)

HereIi(t) is a linear function of the generators of the Lie group and satisfies the equation

i
∂

∂t
Ii(t)+ [Ii(t),H(t)] = 0. (39)

From this set of time-dependent invariant observables we can also construct the complete
set of solutions to the Schrödinger equation [14].

To illustrate the above discussion, consider the example of an SU(3) model describing
the interaction between three oscillators in the rotating wave approximation (RWA) [17].
The Hamiltonian reads

H = H0+HI =
3∑
i=1

xii(t)a
+
i ai +

∑
i 6=j

xij (t)a
+
i aj (40)

whereH0 is three independent oscillators andHI is the interactions between them;ai ,
a+i satisfy the commutation relations [ai, a

+
j ] = δij , [ai, aj ] = [a+i , a

+
j ] = 0; xij (t) is a

non-singular function of timet . The operators

Aij = a+i aj (41)

form a basis of U(3) algebra:[
Aij , Akl

] = δjkAil − δliAkj . (42)

Since the operator
∑3

i=1 a
+
i ai commutes with every member of the algebra, as well as the

Hamiltonian, the algebraic structure of the system is indeed SU(3). This eight-dimensional
algebra has two Cartan operators(A11−A22, A22−A33), three rising operators (A12, A13,
A23), and three lowering operators (A21, A31, A32). An irreducible representation space of
the algebra is spanned by states{
|φ(n1, n2)〉 = |n1, n2, n− n1− n2〉 = 1√

n1!n2!(n− n1− n2)!
a
+n1
1 a

+n2
2 a

+(n−n1−n2)

3 |0〉,

(06 n1, n2 6 n)
}

which are common eigenstates of the Cartan operators, and can be expressed as raising
operators acting on the lowest-weight state of the irreducible representation

|φ(n1, n2)〉 = c(n1, n2)(A13)
n1(A23)

n2|0, 0, n〉 (43)

wherec(n1, n2) is a normalization parameter. The Hilbert space is a summation of all these
irreducible representation space.

The gauge transformation that transforms the Hamiltonian into a linear function of the
Cartan operators, according the above discussion, is chosen as

Ug = ef31A31ef21A21ef32A32ef12A12ef23A23ef13A13. (44)
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where the time-dependent parametersfij (t) are determined by the equations

−iḟ13 = x13− x11f13− x31f
2
13− x12f23+ f13(x33− x32f23)

−iḟ23 = x23− x22f23+ x33f23− x32f
2
23− f13(x21+ x31f23)

−iḟ12 = x12+ x32f13− f12(x11+ x31f13)− f 2
12(x21+ x31f23)+ f12(x22+ x32f23)

−iḟ32 = x32− x31f12− (x33− x31f13− x32f23)f32

+(x22+ x32f23− f12(x21+ x31f23))f32

−iḟ21 = x21+ x31f23− f21(x22+ x32f23− f12(x21+ x31f23))

+f21(x11+ x31f13+ f12(x21+ x31f23))

−iḟ31 = x31− (x33− x31f13− x32f23)f31+ (x11+ x31f13

+f12(x21+ x31f23))f31+ (x21+ x31f23)f32.

(45)

After gauge transformation, the Hamiltonian becomes

H =
3∑
i=1

di(t)Aii (46)

where

d1 = x11+ x31f13+ f12(x21+ x31f23)

d2 = x22+ x32f23− f12(x21+ x31f23)

d3 = x33− x31f13− x32f23.

(47)

Thus the complete set of solutions to the Schrödinger equation is

|ψn1,n2(t)〉 = e−i2n(t)U−1
g (t)|φ(n1, n2)〉 (48)

= e−i2n(t)
∑
m1,m2

Dm1,m2;n1,n2|φ(m1, m2)〉 (49)

where

2n(t) =
∫ t

0
(n1d1(t)+ n2d2(t)+ (n− n1− n2)d3(t)) dt (50)

and the matrix elements ofU−1
g (t)

Dm1,m2;n1,n2(fij ) = 〈φ(m1, m2)|U−1
g (t)|φ(n1, n2)〉 (51)

can be calculated as discussed above. It is a function offij . This function is independent of
the specified system and only depends on the algebraic structure. From direct calculation,
we have

Dm1,m2;n1,n2(fij ) = c〈0, 0, n|(A32(t))
m1(A31(t))

m2(A13(t))
n1(A23(t))

n2|0, 0, n〉 (52)
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where
c = c(m1, m2)c(n1, n2)

A13(t) = A13− A23f21+ A11f31− A21f21f31+ A12f32− A22f21f32

+A33(−f31+ f21f32)+ A31(−f 2
31+ f21f31f32)+ A32(−(f31f32)+ f21f

2
32)

A23(t) = A23+ A21f31+ A22f32− A33f32− A31f31f32− A32f
2
32

A31(t) = A31− A32f12+ A11f13− A12f12f13+ A21f23− A22f12f23

+A33(−f13+ f12f23)+ A13(−f 2
13+ f12f13f23)+ A23(−(f13f23)+ f12f

2
23)

A32(t) = A32+ A12f13+ A22f23− A33f23− A13f13f23− A23f
2
23.

(53)

Substituting equations (53) in (52) and replacingAij and |0, 0, n〉 by a+i aj and
(1/
√
n!)a+n3 |0, 0, 0〉, respectively,Dm1,m2;n1,n2 can readily be worked out by means of the

Wick theorem.
In summary, we have shown a unified way to obtain the exact solutions of the

Schr̈odinger equation for a non-autonomous quantum system whose Hamiltonian is a linear
function of the generators of a semisimple Lie group. The key step is to chose a gauge
transformation that transforms the Hamiltonian into a linear function of the Cartan operators.
In the specified form, the matrix elements of the gauge transformation can be calculated
algebraically. In fact, the above method can also be applied to some non-semisimple Lie
algebras, such as the h(4) and U(N) algebras. The U(N) algebra can also be treated as the
subalgebra of Sp(2N), which is semisimple. Indeed, if the algebra considered has a basis
in the form of (2) with commutation relations in the form of (3), the above method can be
used.

In general, we cannot obtain analytic results by this method. To determine the time-
dependent coefficients of the gauge transformation, one needs to solve a set ordinary
differential equations like (21), (24) and (45). Thus, this method can be viewed as
transforming the Schrödinger equation, a partial differential equation, into a set of ordinary
differential equations. These ordinary differential equations need to be solved numerically in
general. However, it is easier to obtain numerical solutions of ordinary equations than that
of a partial differential equation. Furthermore, to solve these ordinary differential equations,
one does not need the ‘cut-off’ approximation (choosing a finite dimensional subspace of
the Hilbert space to solve the Schrödinger equation). In this sense, this kind of solution is
‘exact’.

This method has a limitation. To obtain the matrix elements of the evolution operator,
this method needs a lowest- (or highest-)weight state|0〉, so that any lowering (or raising)
operator acting on it is equal to zero. When there is no such state in the state space of the
system under consideration, this method does not work.

Note that{|φn〉} in (33) is not the general form of a weight vector. It should be written
as a more complicatedly ordered product of raising operators acting on|0〉. This case can
be treated in the same way as above.
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